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1.  First-principles calculation of Electron transport through organic 

molecule 
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Motivation: 
 
The motivation of our study is to realize the organic molecular conductivity 
computation based on the first-principles calculation. Organic molecules are 
considered as one of the prospective candidates of the next-generation circuit. As 
shown in the figure, the molecule connects to the two leads. If the bias is applied, 
the electron current flows through the molecule. The I-V curve is calculated self-
consistently. The computation is realized by self-developed package TOMBO. 

 
Fig. 1. Benzene is connected with two Au leads 

 
Different from the traditional density functional theory (DFT) method, the 
present system is divided into two infinitive leads connecting with organic 
molecules (shown in Fig. 1.). The whole is in non-equilibrium after applying the 
bias. Therefore, we cannot apply the DFT calculations directly. To achieve the 
computation by using TOMBO, some modifications are required. 
 
Methods: 
 

 
Fig. 2. The algorithms used in traditional DFT calculations and transport 

calculations. 
In traditional DFT calculations, the equations are solved self-consistently (shown 
in Fig. 2.). Firstly, based on DFT, the initial density distribution results into the 
Hamiltonian of the system. Then, from statistical mechanics, diagonalization of 
the Hamiltonian achieves new distribution. Generally speaking, this new 



distribution is different from the previous one. Applying the self-consistent 
process, the system is calculated until the criteria are satisfied.  
 
However, in present case, since the introduction of two semi-infinitive leads, the 
whole system, which has no periodicity, is infinitive.  The traditional DFT fails to 
deal with the infinitive system. Therefore, non-equilibrium Green function 
(NEGF) is introduced and two semi-infinitive leads are represented by self-
energy terms.  
Compared with the traditional DFT process, the first step is same: the 
Hamiltonian comes from the density distribution. But the second step is replaced, 
and the new density distribution stems from the NEGF rather than the statistical 
mechanics. 
 
NEGF: 
 
The Hamiltonian (H) of the system reads, 

 
The first term is the energy levels of the leads, the second term is the energy 
levels of the molecules connecting with the leads and the last two term stand for 
the coupling between the molecules and the leads. 
The self-energy term is, 

 
where giR is the surface Green function. After achievement of self-energy, we can 
get the new density matrix, 

 
The density matrix and the Hamiltonian are solved self-consistently, and the 
current is calculated if the criteria are satisfied.  

 
where fi is the Fermi distribution of the ith lead and 

 
which represents the broaden of the energy levels.  
 
Wannier Function: 

 
The basis sets used in TOMBO is mixed basis sets. 

 



In the mixed basis sets, there are two parts. One is plane waves basis sets, the 
other is atomic basis sets. 
The plane waves are non-localized. To divide the whole system into three parts, 
we have to introduce Wannier function. In our program, we will use maximally 
localized Wannier function (MLWF). 
If Wannier function is achieved, we can express the Hamiltonian operator in real 
space by using the definition: 

 
where Uk is the unitary matrix. The strategy consists of choosing the U that 
minimize the sum of the following spreads of the Wannier functions about their 
centers: 

 
The matrix elements of the position operator between Wannier functions may be 
expressed in reciprocal space as: 

 
If the Wannier function is achieved, we can get the self-energy and calculate the 
current through the molecule. 
 
Outlook: 
 
Since the periodic boundary condition should be valid in the calculation, the 
application of the electric field breaks the translation invariance.  To recover the 
periodic boundary condition, the saw-tooth like potential should be applied in 
our calculation.  So far, the application of the electric field is not available in 
TOMBO, we have to modify the source code and make it possible. 
 
Conclusion: 
 
 

1) The whole system should be separated into three parts, left semi-
infinitive lead, finite organic molecule, and the right semi-infinitive lead. 
Since two different types of basis sets, namely plane-waves and atomic 
orbitals, are used in TOMBO, we introduce the maximally localized 
Wannier function (Wannier90), to realize the separation. 
 

2) The infinitive system cannot be calculated directly. Given the fact that two 
leads are very close to their equilibrium state, non-equilibrium Green 
function (NEGF) is used, and two semi-infinitive leads are represented by 
self-energy terms. These self-energy terms have the same dimensions as 



the organic molecule. Therefore, the infinitive system is equivalent to the 
finite organic molecule plus two finite self-energy terms. 

 
3) In the calculation, the periodical boundary condition should be satisfied. 

However, if the bias is applied, the potential drop is found in the two leads 
to counter-balance the applied bias. Unfortunately, this is not the real case. 
To solve this problem, we introduce the potential drop in the vacuum. 
Therefore, electrostatic potential of two leads is homogeneous, and the 
leads can be replaced by two self-energy terms. 
 

 
  



1. First-principles calculation of thermal transport in GeSe 
 

Keivan Esfarjani1, Yunye Liang2 and Yoshiyuki Kawazoe2 

 

1 Department of Mechanical Engineering, Rutgers University, 
Piscataway, NJ, USA 

2 Institute for Materials Research, Tohoku University, Sendai, Japan 
 
GeSe as a IV-VI chalcogenide material, has good potential as a 
thermoelectric material. Our goal in this project is to apply our 
newly-developed methodology[1] to calculate its phonon dispersion 
and thermal conductivity.  
 
In the previous reports, from the first-principles DFT calculations in a 
large supercell containing 480 atoms, we obtained the phonon 
dispersion and showed that a large number of neighbor interactions 
needs to be included in order to produce the correct phonon 
dispersion. 
Due to the low symmetry of the structure and the nature of the 
chalcogenide element, the phonon calculations did not converge until 
the range of interactions  were increased up to 8 Ao . This includes up 
to 41 st nearest neighbors in the harmonic force constants. Cubic FCs 
were included up to 5th shell and quartic up to the second shell. 
 
Figure 1 shows the decay of harmonic spring constants versus 
distance when up to 76 neighbor shells, corresponding to a pair 
distance of 9.42 Ao are included in the fitting. This figure shows that 
changing the number of included force constants does not change 
their actually fitted value. Due to the heavy size of the calculations, 
the k-point summation in the calculation of the phonon lifetimes 
included a 6x6x6 mesh in the full Brillouin zone. Results presented in 
this report refer to this mesh. We need however to perform 
calculations with a larger k-mesh in order to obtain results which are 
converged with respect to the number of kpoints. Usually an 
extrapolation procedure[1] needs to be performed in order to reach 
the converged value.  
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Given that 
the 

crystalline 
structure 

of GeSe is 
orthorhom

bic, the thermal conductivity tensor is diagonal, with three different 
values along the 3 principal axes. Here we are reporting the third of 
the trace of that tensor. The contribution of different branches can 
also be considered. Usually the acoustic branches contribute most to 
the thermal conductivity as their group velocity as well as their 
lifetimes are largest. In this case, each of the acoustic modes 
contributes to about 20% of the total value.  As can be seen from this 
figure, the first 3 branches contribute to almost half the total thermal 
conductivity. 
 
 
 In the future, we will examine the convergence of the results with 
respect to the fineness of the k-mesh chosen in the first Brillouin 
zone. These are very heavy calculations which scale as the cube of the 
number of modes (=24 in this case). Large unit cells would require 
much more computational resources than the more simple primitive 
cells which contain one or two atoms. Once the convergence is 
achieved, phonon relaxation times and mean free paths will also be 
calculated and displayed. Their contribution to the heat transport 
will accordingly be discussed. 
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Figure 1: Spring constants versus neighbor distance, 
normalized to the nearest neighbor which is 2.57 A. 
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Figure 2: Total and partial thermal conductivity versus 
temperature. The contribution of the 3 acoustic modes and 
their sum is being compared to the total thermal  
conductivity. 
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